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Abstract. In most cases the programming models of distributed object-ori-
ented systems have a two-stage or even a three-stage object model with dif-
ferent kinds of objects for values, distributable and non-distributable ob-
jects. This allows an efficient implementation for at least non-distributed ob-
jects, because traditional compilers can be used. This paper discusses some
aspects of the implementation of a uniform object model that does not know
of any distinction between distributable and non-distributable objects and al-
lows an independent application description of the distribution of objects.

Instead of integrating distribution later into a non-distributed language
our method takes the opposite approach. For the time being a distributed ob-
ject model is implemented in a general, distributed, and, of course, ineffi-
cient way. With some additional information derived by user supplied decla-
rations or automatically by a compiler the general implementation becomes
more and more optimized. With assertions likeimmutable or constantly and
initially bound objects the implementation can be optimized such that the
non-distributed case is not worse than in traditional object-oriented languag-
es.

1 Introduction

Usually distributed object-oriented systems are derived from non-distributed ob-
ject-oriented languages, i. e.Argus from CLU [1], Clouds from C++  – calledDC++
[2] – and fromEiffel – calledDistributed Eiffel [3]. These approaches introduce a
new kind of object which is distributable, all other objects of the base language used
being non-distributable. The result is a two-stage object model with different se-
mantics for each stage. The parameter-passing semantics depend on the kind of ob-
ject passed, i. e.call-by-copy semantics (corresponds tocall-by-value) for non-dis-
tributed objects andcall-by-reference for distributed objects. Often, values form
their own kind of objects resulting in a three-stage object model, e.g. inDC++ .

This is an advantage because those object models are easy and quite efficient to
implement, as the compiler of the base language can be used for all non-distributed
kinds of objects and produces efficient code as well. Distributed objects are imple-
mented by stub objects, which are non-distributed objects. These are passed bycall-
by-copy semantics which is in factcall-by-reference semantics for the distributed
object.
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The different semantics for the different kinds of objects are the great disadvan-
tage of these approaches. Often the kinds of objects are fixed by their respective
classes, e. g. inArgus. There is a need for two classes, one for distributed and one
for non-distributed objects. This impairs the reuse of code and it is not easy to see
which semantics apply for a certain method call.

Another problem remains. The distribution of the objects is explicitly described
in the program, thereby also affecting reusability. Yet, distribution is orthogonal to
the programming of objects, with the exception of different failure models and dif-
ferent time behavior. Thus, we require a distribution description separate from the
program description. To achieve this we need a uniform object model, as that is the
only way to abstract completely from the distribution of objects.

Emerald is one approach with a uniform object model [4], but it has no separate
description of distribution. Distribution is described inside anEmerald program
with explicit statements.

This paper shows some aspects of implementations for uniform object models
with a separate distribution description. Instead of extending a non-distributed lan-
guage we choose the opposite method. In chapter 2 we introduce an object model
for arbitrarily distributed objects. There is a separate description language for dis-
tribution. Chapter 3 presents a simple distributed implementation which is not very
efficient. The efficiency is improved by suitable optimizations. Different aspects of
the possible optimizations are shown. Chapter 4 contains a conclusion and ends with
an outlook on future work.

These thoughts are originated from within the PM project of the IMMD 4, Uni-
versity of Erlangen-Nürnberg. The distributed object model is used there to model
distributed operating systems.

2 A Distributed Object Model

This chapter introduces a distributed uniform object model for programming dis-
tributed applications or parts of operating systems. It definesobjects, methods,
classes, types, and requests.

2.1 Objects and Classes

Objects are the smallest distributable entities. They have behavior and state. The be-
havior is expressed withmethods; operations which can be invoked by clients of an
object. The state of an objectA consists of references to other objects. ObjectA can
be a client of all these objects and invoke any of their methods. References are
bound to variables which can be accessed by the objects’ methods only1. A graphi-
cal representation is shown in fig. 3.1. The rectangles represent objects, boxes rep-
resent variables and arrows represent references from variables to objects.

1. The access from a client to a variable can be allowed by using some special meth-
ods which can be derived automatically by a compiler.
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With the invocation of a method an independent virtual thread of activity is cre-
ated executing the code of the method. After having done all computing and sending
back the results to the client the thread of activity is destroyed. The thread of activ-
ity is called arequest. During the execution of a method invocation all requests are
seen as part of the state of the object which defines the method. The general param-
eter-passing semantics iscall-by-reference. Therequestgets some references as pa-
rameters from the client and sends back some references as a result.

Classes are defined as sets of objects with the same behavior and identical struc-
ture of state. They constitute equivalence classes according to an equal relation of
state and behavior. This extensional definition does not directly correspond to the
definition of the termclass in most programming languages. In a language the term
class is almost intensionally defined.Classes are directly described and their ob-
jects are created from this description.

Languages likeSelf do not know classes as a concept of the language itself [5],
but it is possible to identify the extensionally defined classes in these languages. For
this paper it does not matter whether classes are concepts of a language or not. We
refer in the next sections to the extensionally defined term.

2.2 Types

Types are equivalence classes ofclasses with the same abstract behavior. In most
languages, likeC++  andEiffel, the notion of type and class is the same, [6] and [7].
These languages do not know any mechanisms to declare two classes to be of the
same type; not even when these classes are identically declared.

Type conformance is a subset relationship between types. This corresponds to the
definition of Palsberg and Schwartzbach, [8] and [9]. Type conformance is also pos-
sible in C++  andEiffel, but only by using inheritance between classes. Inheriting
classes are type-conforming to their base classes.

We propose that the notion of type is to be represented by some language con-
cepts. A class2 has to decide to which type it belongs. This results in an explicit sep-
aration of types and classes. It is necessary to make an explicit decision as to which
type is supported by which class, because the compiler cannot decide which abstract
behaviors are conforming.

2. Or an object (depending on if classes are defined as a language concept).

Fig. 2.1 A graphical representation of objects, variables and references
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2.3 Distribution

As mentioned above objects are the smallest entities for distribution. References
can point to a distributed or to a local object. The method invocation on distributed
objects is implemented by an RPC style communication. The semantics of a pro-
gram is therefore independent of the possible distribution of the objects with the ex-
ception of different failure models and possible run-time differences. Thus, distri-
bution is described in a separate programming model based on relative properties of
distribution between the objects, calledcollocations anddislocations. Further infor-
mation can be found in [10] and [11].

Objects can migrate arbitrarily in the system. This means that they can change
their physical location at run-time, e. g. for an optimization of the total run-time of
a program. The migration of objects is controlled by so calledcooperations. These
are part of the programming model of the distribution system and can be described
there. Cooperations may dynamically create and destroy relationships of collocation
or dislocation between objects and indirectly cause object migrations – see again
[11].

3 Aspects of Implementation

One simple approach towards implementation of the described object model is ex-
emplified in the following:

• Objects are implemented as continuous parts of memory containing all variables
and methods.

• Each object has a unique identification calledOID (object identifier), which has
a system-wide uniqueness.

• References to other objects are stored in variables. These references are repre-
sented asOIDs.

• Method invocations are handled by a run-time system which determines the ac-
tual position of an object by itsOID.

An implementation like this is possible but certainly not efficient. The identifiers
need a size of 96 to 128 bits to support a world wide distributed system. A variable
needs 12 to 16 bytes of memory to store a reference. The search for objects will be
very expensive, as objects may be located anywhere. Searching is also done for of-
ten used objects like integers or booleans.

It is immediately obvious that smaller identifiers would increase this efficiency.
They would need less memory and allow faster searches for objects. The best case
of an implementation of an OID is a pointer. There is no need for a search if the OID
is a pointer to the memory space of an object. But in this case the object is not mi-
gratable without restrictions, as it must be located in the same address space.

As mentioned already an efficient implementation is possible with a multi-stage
object model. Non-distributed objects are addressed by pointers and distributed ob-
jects are addressed by stub objects containing a large OID. These stub objects are
only part of the implementation. This kind of implementation should be rejected be-



5

cause it cannot support a uniform object model. The following sections will show
some aspects of optimizing the addressing of objects under certain circumstances.

Generally a more efficient implementation can be achieved by using smaller rep-
resentations of the OIDs. The identifiers are to be stored in variables. But a variable
is only bound to a subset of all objects during its lifetime. Thus, only the identifiers
of those objects are to be stored in that variable. One approach could be to assign
each variable a specific and different set of identifiers for all objects possibly bound
to that variable. This is disadvantageous because assigning one variable to another
is a more complex operation; the identifier of one object stored in one variable is
different from the identifier of the same object stored in another variable. Trying to
avoid all conversions of identifiers generally leads to a representation of identifiers
which is as large as the unique OID.

Another drawback to using different identifiers for the same object is complex
identity comparisons. They are needed as user level statements or as run-time state-
ments for all kinds of aliasing-detection.

3.1 Constant Collocation

When the user specifies the distribution of an application in the distribution system
there are objects which are constantly collocated; meaning their collocation rela-
tionship does not change during run-time. Using this information groups of objects
can be derived which are all in a transitive collocation relationship. These groups
are calledclusters [11].

A simple way of using smaller identifiers is to split the OID into a Cluster ID
(CID) and an identification local to a cluster (LID), see fig. 3.1. Inside a cluster local
objects can be addressed by the LID only. The same objects are addressed from out-
side using the full OID. The CID allows a more efficient address resolution because
there are fewer clusters than objects in the system.

Identity comparisons are simpler, because LIDs are part of the OIDs. References
from inside a cluster assigned to variables outside are converted by simply adding
the CID part to the LID.

The LID itself can be implemented by a pointer into the continuous memory
space of a cluster. This pointer can even be an offset for some segmentation mech-
anism used to implement a position-independent addressing-scheme inside a cluster.

This kind of optimization can only be used for constantly collocated objects. Mo-
bile objects form a cluster of their own and can only be addressed by a full OID.
Variables inside a cluster which can be bound to objects of their own cluster and to
objects outside of that cluster cannot use the efficient local addressing-scheme.
They have to use the full OID address. The distinction between LID and a full OID
would cause more overhead than the optimization of the local addressing would in-
crease efficiency.

CID LIDOID Fig. 3.1 Splitting the OID
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3.2 Immutable Objects

Immutable objects only have constant bindings to other immutable objects. This im-
plies that all their requests do not interfere. The result of a request depends only on
its parameters. A request cannot store any information in an immutable object.

Immutable objects are easily shared. Shared immutable objects can be copied and
each client can have its own copy without noticing it. The semantics of a program
stay the same with shared or with copied immutable objects. Only correct identity
comparisons between the copies must be realized. Immutable objects are candidates
for a per cluster copy. Thus, they can always be addressed by a small LID. In our
distribution system immutable objects can be collocated to two dislocated objects.
This conflict is not solvable in the case of a mutable object.

This kind of optimization is very suitable for all kinds of value objects. Previous-
ly, in CLU andEmerald, values were modelled by immutable objects, [12] and [4].
There is no need to share integer values all over the system, as there can be copies
for at least each cluster.

As the identifier of an immutable object has enough information about the object
itself, there is no need to implement the object in the memory space in all cases. For
further optimizations special identifiers, calledVIDs (value IDs), can be used for
binding immutable objects. These identifiers do not address certain objects (in the
implementation), they stand for them. VIDs can be made unique within the system
and thus there is no need for a conversion when assigning a reference from one clus-
ter to another. The representation of a VID can be very special, e. g. for integers it
may be a bit-pattern. This bit-pattern allows for direct integer arithmetic operations.

3.3 Constantly and Initially Bound Variables

A variable is initially bound when a reference is bound at creation time. Constantly
and initially bound variables are bound at the object creation. This binding cannot
be changed. Such a situation can be used for an optimization called memory inlin-
ing. The variable does not contain an identifier of the bound object but the object
itself (fig. 3.2). In the distributed object model this optimization is only possible
with an additional constantly collocated relationship between the objects.

In C++  all non-pointer variables are initially and constantly bound references. In
Eiffel these kinds of objects are calledexpanded objects. In both languages the prob-
lem lies with the different kinds of objects having different parameter-passing se-
mantics for non-pointers or expanded objects respectively;call-by-copy instead of
call-by-reference. In our approach the memory inlining is a matter of an implemen-
tation and is independent of all semantics of the object model. There is no need to

Fig. 3.2 Memory inlining of objects
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declare initially and constantly bound references at all, because they may also be
derived by a compiler.

Inside a cluster inlined objects can be addressed by a LID. Outside of a cluster
the usual OID is used. Initially and constantly bound, immutable objects can be
treated like plain immutable objects; they can be copied freely. In this special case
the new properties can be used to place the VIDs directly in the code and not nec-
essarily in the variables. This procedure is the same as that done by compilers which
implement constants integrated into machine instructions and which are not loaded
from memory. Variables initially and constantly bound to immutable objects may
not be represented in the memory space of the object when this property is known
to all clients. This is the case, at least, for the code of the object’s methods.

3.4 Classes

Classes are defined extensionally in chapter 2. Thus, they do not need a representa-
tion at run-time. Each object has its own methods, because only its own methods
can access its local variables. In an implementation it does not make sense to have
all objects with their own method code. The grouping of equal methods is recom-
mended for efficient memory usage. The access of the method code to the variables
of an object is implemented by segmentation mechanisms like index registers or
hidden parameters.

The method code of the objects belonging to one class can be implemented by a
special object visible to the implementation only. Each object of the class has a ref-
erence to that code object. It represents the class (fig. 3.3).

The code of a class is normally immutable. Thus, the code can easily be copied
in each address space and be addressed locally. This is a must for executable code.
The code object has a strongly collocated relationship to all the objects using the
code. Because it is immutable, dislocation conflicts between these objects can be
solved by different copies of the code.

The reference from each object to the code object is initially and constantly
bound. Thus, there is no need for the reference when all clients know which class
an object belongs to. Then the code of a method can be directly addressed by a cli-
ent. The reference to the code object can be omitted when all clients know the class
of the object.

Code
LID

LID
Fig. 3.3 Objects of one class and their code object
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3.5 Inheritance

Inheritance is a concept of composing classes. As types are separated from classes
we need some kind of inheritance for both of them. Inheritance for types may be a
concept of creating conforming types. This does not lie within the scope of this pa-
per.

This section deals with class-based inheritance, but not subtyping. Inheritance
between classes is used for refining and reusing the behavior of some base classes
into subclasses. In most languages the subclass is seen as one unit containing the
inherited properties of the base classes. See fig. 3.4 for a graphical representation
of classC inheriting from classB, which inherits from classA.

 We propose another view to inheritance. We identify subclasses as differential
classes which describe all the changes of and refer to the base classes. Thus, the sub-
classes do not include properties of the base classes, they only refer to them. In fig.
3.5 the same situation seen in fig. 3.4 is presented, but the boxes represent differen-
tial classes. The objects of the classes in an inheritance hierarchy refer to each other
by a reference. These references correspond to keywords likeself andsuper3. Self
refers to the last subclass which inherits no further.Super refers to the base class.
These references are represented in fig. 3.5 by arrows. Grey arrows areself refer-
ences which are rebound by the inheritance mechanism.

Using references of the objects of inheriting classes to model inheritance has its
advantages for implementation. There is no need for a special implementation
mechanism to deal with inherited classes. The implementation treats differential
classes as normal classes. The creation of objects of these classes also causes the
creation of objects of the base classes with certain bindings for theirself andsuper
variables. The bindings are initially and constantly bound and all objects are collo-
cated, i. e. the bindings are addressed by LIDs and memory-inlining can be done.
This is quite the same implementation as in traditional languages, e.g.C++ .

In our model there is no need to collocate the objects. A dislocation leads to a
distributed inheritance mechanism, which allows the distribution of some parts of
an object. This is possible because there is not only one object of an inheriting class,
but many objects of many base or differential classes respectively.

3. We adopted these names from theSmalltalk terminology [13].

CC
B

AA

Fig. 3.4 ClassC inheriting
from B and A

C B A

Fig. 3.5 Bindings between differential
classes

super super

self self

self
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3.6 Type Checking

Like classes types do not necessarily need a run-time representation. Types are in-
troduced to get programs type checked, i. e. all method calls are legal and the well-
known Smalltalk error message, “message not understood”, will not occur.

Compilers can do most of the type checking at compile-time, but there are several
circumstances which need a run-time type checking, e.g. fortype-case andtype-of
statements and for binding references to a variable with larger type. In a distributed
environment there may be objects with types which are not even known at compile-
time. To initialize a distributed application the run-time system needs to type check
all references to objects with these unknown types. For all these cases of run-time
type checking a representation of types at run-time is necessary.

Therefor we introduce one more set of auxiliary objects for types. All objects
have a reference to a type-object. This is constantly and initially bound and immu-
table. Thus, it is subject to the above-mentioned optimizations.

The type objects have a method for type comparisons as inEmerald [4]. These
methods and the unique identification of type-objects are used for run-time type
checking.

4 Conclusion

We have shown that in some circumstances the implementation of a uniformly dis-
tributed object model can be optimized. This optimization is as efficient as non-dis-
tributed language implementations when the application is not distributed, because
the implementation places all objects into one cluster and collocates them. Internal
pointers are avoided by memory-inlining when objects are initially and constantly
bound. Immutable objects allow the inlining of object references in the method
code. This corresponds to compiled programs in a non-distributed language.

A distributed application is obviously not as efficient as a non-distributed appli-
cation when we only look at the addressing of objects and memory usage. The
above-mentioned optimizations are a step towards an optimal implementation.

To validate the practical use of the optimizations the construction of a prototyp-
ical compiler is planned. This compiler will output, with specific distribution de-
scriptions, the possible implementation optimizations of specific example applica-
tions.
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