Computer
Science Department

Operating Systems — IMMD IV

Friedrich-Alexander-University
Erlangen-Nirnberg, Germany

4 B
AspectlX contributions to the
ECOOP’98 conference
Franz J. Hauck (Ed.)

September 1999 TR-14-99-08
\ /

Technical Report

AspectlX Contributions to ECOOP '98 Workshops and Poster Session

Published in:
S. Demeyer, J. Bosch (EdsQbject-oriented technology, ECOOP '98 workshop read®&CS 1543, Springer,
1998.

3rd Workshop on Mobility and Replication

Support for mobility and replication in the AspectlX architecture
Martin Geier, Martin Steckermeier, Ulrich Becker, Franz J. Hauck, Erich Meier, Uwe Rastofer 3

Tradeoffs of distributed object models
Franz J. Hauck, Francisco J. Ballesteros 5

Workshop on Aspect-Oriented Programming

AspectlX: a middleware for aspect-oriented programming

Franz J. Hauck, Ulrich Becker, Martin Geier, Erich Meier, Uwe Rastofer, Martin Steckermeier 8
Posters

The AspectlX ORB architecture

Franz J. Hauck, Ulrich Becker, Martin Geier, Erich Meier, Uwe Rastofer, Martin Steckermeier 10

Support for Mobility and Replication in the AspectlX
Architecture

M. Geier, M. Steckermeier, U. Becker, F. J. Hauck, E. Meier, U. Rastofer

University of Erlangen-Ninberg, Germany,
{geier, mstecker, ubecker, hauck, meier,
rastofer }@informatik.uni-erlangen.de ,
http://www4.informatik.uni-erlangen.de/Projects/AspectIX/

Abstract. Unlike CORBA with its static client-server relationshifspectiXuses

the concept of distributed objects. Distributed objects consist of so called frag-
ments, that communicate with other fragments to synthesize the desired behaviour.
The local fragment can carry more semantics than a simple CORBA stub and can
be replaced at runtime by another fragment to fulfill the application’s require-
ments.AspectlXtherefore provides a single mechanism that is especially suited
to realize both: mobility and replication.

1 The AspectIXArchitecture

From the outside, aAspectiXimplementation looks like a standard CORBA imple-
mentation [3]. There are location transparent names for objects, which are converted to
a local object referring to the distributed object.

Unlike CORBA, theAspectiXarchitecture adopts a fragmented object model similar
to Fragmented Objects from INRIA [2] and Globe from the Vrije Universiteit Amster-
dam [4]. A distributed object consists of several so called fragments, which can interact
with each other. A client of the object needs at least one of these fragments in its local
address space.

A fragment could be a simple stub (as in CORBA), which is created on the client
side and connects to another server-fragment. On the other hand, fragments at the client
side can be more intelligent, e.g. by realizing real-time constraints on the communica-
tion channel or replication strategies.

The local fragment of a distributed object provides an interface described in CORBA
IDL. When a fragment is created, e.g. as a result parameter of a method invocation, the
ORB creates two local objects in the desired target language: a fragment interface and
a fragment implementation.

The fragment interface is a generic object that is automatically generated during the
development process. It only depends on the IDL description of the distributed object’s
interface and its main purpose is to delegate method calls to the fragment implementa-
tion. In the simplest case, the implementation does nothing more than a remote method
invocation, thus the combination of interface and implementation object realizes the
same semantics as a traditional CORBA stub.

By the separation into fragment implementation and fragment interface, the actual
structure of the distributed object is hidden to the client application. Implementation ob-
jects can be replaced and the distributed object can be extended by additional fragments
dynamically at runtime. Moreover, there can be different interface objects sharing the
same implementation object similar to [1], which allows to distinguish between inter-
nal interfaces needed for interfragment communication and external interfaces offered
to the client application.

2 Support for Mobility and Replication

Realizing mobility and replication with this architecture is straight forward by extend-
ing and shrinking the distributed object.

In case of replication the distributed object is simply extended by an additional
fragment which acts as a replica. Nevertheless this replica represents still the same
distributed object, i.e. it is transparent to the client application whether it accesses a
remote object or a local replica. It is the task of the replica to implement the specified
consistency model communicating with the other fragments using staddaettiX
communication mechanisms.

For mobility, we first use the same mechanism as for replication, i.e., we extend
the distributed object with a new fragment at the destination site. After transferring
the whole state from the original fragment to the new one, the old fragment can be
replaced by a simple stub acting as a forwarding entity. If no further communication to
the distributed object is required from the original site, the fragment on this site can be
deleted; this results in a migration of the distributed object. To the client application,
this migration is atomic as it only sees the distributed object not its interior fragments
that might be in an intermediate state.

References

1. Peter Dickman and Mesaac Makpangou: A Refinement of the Fragmented Object Model,
Third International Workshop non Object-Orientation in Operating Systems (1992).

2. Mesaac Makpangou and Yvon Gourhant and Jean-Pierre Le Narzul and Marc Shapiro: Frag-
mented objects for distributed abstractions, In: T. L. Casavant and M. Singhal (eds.), Readings
in Distributed Computing Systems, IEEE Computer Society Press (1994), 170-186.

3. Object Management Group: The Common Object Request Broker Architecture, Version 2.2.
(1998).

4. M. van Steen, P. Homburg, and A.S. Tanenbaum: The architectural design of Globe: a wide-
area distributed system, Technical Report IR-422, Vrije Universiteit Amsterdam (1997).

Tradeoffs of Distributed Object Models
Summary of Working Group A

Franz J. Hauckand Francisco J. Ballestefos

L IMMD IV, Univ. of Erlangen-Nirnberg, D-91058 Erlangen, Germany,
hauck@informatik.uni-erlangen.de
2 Universidad Carlos Ill de Madrid, E-28911 Leganes (Madrid) Spain,
nemo@gsyc.inf.uc3m.es

Abstract. Starting with three questions concerning distributed object models
working group A of the ECOOP '98 Workshop on Mobility and Replication dis-
cussed several tradeoffs of distributed object systems and models. This summary
is an attempt to state the things said and lessons learned in this group.

1 Initial questions

The group started with three different but related questions concerning distributed ob-
ject models:

1. Can fine-grained objects be distributed?
2. Can objects be grouped for scalability reasons?
3. How can dynamic scheduling of replication be realized?

Since a significant percentage of the working group came from the same research group
at Univ. of Erlangen-Ninberg, and being all of us so impressed by their white T-shirts
with graphics from their article, most of our discussion was biased towards their re-
search topic, théspectlXarchitecture [1].

In AspectlXthe system is made of a bunch of distributed shared objects. Each dis-
tributed object is perceived as a single object by its users. However, the object is actually
distributed and made of separate fragments. Such fragments cooperate through the net-
work to implement the object as perceived by its user. The object modedpctiXs
very similar to the model used f@lobe[2] andSOS/Fragmented ObjedB].

2 Fine-grained objects

In fragmented object models we face two different object models: one for programming
distributed objects and one for local objects (fragments). This makes distributed pro-
gramming more complex. It also leads to coarse-grained distributed objects and proba-
bly more fine-grained local objects. With this in mind we approached the first questions:
can fine-grained objects be distributed?

TheEmeraldsystem [4] showed that it is possible to have a uniform object model, in
which every object can be either local or distributed. So, even very fine-grained object

can be distributed if necessary. Even more important is the possibility that one object
of the same class can be distributed whereas another may remain loc&nignald
people claim to have evidence that in nonuniform models a class for local objects needs
to be rewritten because an object of that class is to be distributed. This problem does
not arise with a uniform object model.

As at least two participants of the working group have belonged tdtherald
community, the group discussed the tradeoffs between uniform and fragmented object
models. The uniform model has clear advantages in complexity, and code is probably
more reusable.

The main problem in large-scale systemisaserogeneity This does not only mean
different brands of hard- and software, but also different programming models and lan-
guages, especially as it is crucial to integrate legacy code into a new system. Thus,
we have a problem to use languages Hwmeraldfor this kind of systems, especially
because legacy code usually does not use a uniform object model: we would have to
rewrite legacy code iEmerald

The focus of nonuniform models like CORBA [5] is amteroperability , not only
between different languages but also with legacy objects. In CORBA programmers have
to deal with two different models one for distribution and one for local (language-based)
objects. However, even homogenious systems like Java RMI have slightly nonuniform
object models for remote and local objects [6].

In AspectiXwe also have two different models. On one hand, people programming
a distributed object will perceive the object as a (distributed) set of fragments. On the
other hand, looking from outside, such fragments appear to be a single distributed ob-
ject. However, we could imagine some tool support that allows programmers to convert
a local fragment into a distributed object and automatically generate different fragment
implementations from an abstract object definition, which in turn could use a more
uniform object model.

3 Grouping of objects

A uniform object model also introduces fine-grained distributed objects (e.g. integer
objects). The administrative overhead of fine-grained distributed objects is very high.
Migration and replication of such an object induces tremendous overhead compared to
the object’s initial functionality. Object grouping can be used as an aid for administra-
tive scalability. It is the same concept used in the real world were several fine-grained
objects can be clustered so they could be handled as a single one.

If objects are grouped together the per-object overhead decreases because a whole
bunch of objects is migrated or replicated at the same time at almost the same cost. We
can distinguish administrative overhead (e.g., costs for addressing and naming) from
communication overhead (e.qg., costs for data transfer).

The tradeoff arising when objects are grouped together is that of “False Sharing”.
The objects within a group stay together even if they are not needed together. If we
like to have one of the objects locally available we have to migrate them all to our local
host. If we want one of the objects replicated they all get replicated. Consider as another
example a file being used by several persons, who happen to work on different sections

of the file. There is no sharing, but grouping the data will make the system think there
is.

4 Scheduling of replication

The third question of how we can realize dynamic scheduling of replication was only
briefly discussed. First, we identified that it is not a binary question but has many inter-
mediate approaches. We could have simple stubs talking to a server object on the one
end, and we could have fully replicated state on the other end. Inbetween, we could
imagine various possibilities in form of different caching techniques and consistency
schemes, perhaps even applied to a part of the object’s state only.

We discussed how afispectiXdistributed shared object could adopt different im-
plementations (ranging for full replication to simple stubs). The fragment programmer
would employ utility libraries according to the chosen semantics. Outside the object,
the interface would stay the same; within the object, the replication semantics would
change.

The appropriate degree of replication and the adoption of stubs or replicas was
promptly identified as an open question as well as a good topic for future work.

5 Conclusion

We identified future work in the area of supporting programmers of distributed objects.
If there are different object models to deal with at the same time they should be as
similar as possible and objects from one model should be able to be converted to objects
of the other model.

Another open question is how to adopt and dynamically change replication and
caching strategies in systems likepectlX After all, this kind of systems only provides
mechanisms and we have to look at the policies as a separate issue.

References

1. M. Geier, M. Steckermeier, U. Becker, M. Geier, F. Hauck, E. Meier and U. Rastofer: “Support
for mobility and replication in the AspectlX architecture.” HECOOP’98 Workshop Reader
LNCS, Springer (1998).

2. M. van Steen, P. Homburg, and A.S. Tanenbalihe architectural design of Globe: a wide-
area distributed systerechnical Report IR-422, Vrije Universiteit Amsterdam (1997).

3. M. Makpangou, Y. Gourhant, J.-P. Le Narzul and M. Shapiro: “Fragmented objects for dis-
tributed abstractions.” In: T. L. Casavant and M. Singhal (e@&e@dings in Distr. Computing
SystemslEEE Comp. Society Press (1994), 170-186.

4. R.K. Raj, E. Tempero, H.M. Levy, A.P. Black, N.C. Hutchison and E. Jul: “Emerald: A
general-purpose programming languag8dftware—Practice and Experienc2l:91-118
(Jan. 1991).

5. Object Management Grouphe Common Object Request Broker Architectiersion 2.2.
(1998).

6. Sun Microsystems IncJava Remote Method Invocatin Specificatidfountain View, CA
(Feb. 1997).

AspectlIX
A Middleware for Aspect-Oriented Programming

F. Hauck, U. Becker, M. Geier, E. Meier, U. Rastofer, and M. Steckermeier

IMMD 1V, Univ. of Erlangen-Nirnberg, D-91058 Erlangen, Germany,
{hauck,ubecker,geier,meier,rastofer,mstecker }
@informatik.uni-erlangen.de
http://www4.informatik.uni-erlangen.de/Projects/AspectIX/

Abstract. The AspectiXmiddleware architecture allows to specify aspects, and
to program and configure these aspects via well-defined configuration interfaces.
Aspects can be added and controlled dynamically. Distributed objects support
aspects and clients only need to know the configuration interfaces to control as-
pects.

Currently we have considered aspects concerning the internal communication
semantics of the object, consistency, replication, and mobility. For combining
AspectIXwith aspect-oriented programming, we envision aspect weavers that
generate code for th&spectiXconfiguration interface.

1 Motivation

Object-based middleware systems, like CORBA [1], provide the basis for object-based
distributed applications. Nonfunctional properties are usually addressed as add-on mech-
anisms of the system (e.g., CORBA services) or not addressed at all. In the latter case
the user has to build his own concepts on top of the available programming model (e.g.,
replicated objects on top of nonreplicated objects).

Aspect-oriented programming uses specialized aspect languages to program non-
functional properties (aspects) of an application. Thus, better isolation, composition,
and reuse of the corresponding aspect code can be achieved [2]. Aspect code is typi-
cally weaved into the basic program. Therefore, the aspect code is converted to func-
tional code that is executed as defined by the aspect’'s semantics.

In distributed systems, applications may consist of several parts of which the source
code is not available (e.g., server code). Thus, weaving-in of aspects is not always pos-
sible. Additionally, aspects need to be integrated and controlled without recompiling the
application, which is not possible with available aspect-oriented systemg\spieetiX
middleware architecture allows to dynamically specify new aspects and to program
these aspects via well-defined interfaces.

2 AspectlXarchitecture

Unlike CORBA, theAspectiXarchitecture adopts a fragmented object model similar
to Fragmented Objectfrom INRIA [3] and Globe from the VU Amsterdam [4]. A

distributed object consists of several so called fragments, which can interact with one
another. A client of the object always has at least one of these fragments in its local
address space and there can exist additional fragments without direct clients.

A fragment could be a simple stub (asin CORBA). The stub may connect to another
fragment (in CORBA: the server object) that holds the object’s functionality. On the
other hand, fragments at the client side can be intelligent. An intelligent fragment may
hide the replication of the distributed object’s state, it may realize real-time constraints
on the communication channel to the server fragment, it may cache some of the object’s
data, and it may locally implement some of the object’s functionality, just to name a
few possibilities. In general, different nonfunctional properties can be implemented by
special fragments implementing the desired semantics.

Distributed objects il\spectiXcan support multiple aspects. Aspects have specified
semantics and a defined configuration object, which allows for activating an aspect (i.e.,
the object starts behaving as specified by the aspect) and for tuning parameters of the
aspect (e.g., maximum time allowed for a method invocation). Clients can control the
aspect configuration of their local fragment. TherefdkepectlXprovides a generic
interface to retrieve and change the current aspect configurations. If a fragment cannot
implement the current configuration it may load a fragment that is capable to do so.
New fragment implementations supporting new aspects may be introduced at run-time.

3 Conlusion

TheAspectlXarchitecture offers a generic interface for controlling nonfunctional prop-
erties of distributed objects on a per-object basis. Currently we have considered aspects
concerning the internal communication semantics of the object, consistency, replication
and mobility (see [5] for more details).

For combiningAspectiXwith aspect-oriented programming, we envision aspect
weavers that generate code for thspectliXconfiguration interface. Aé\spectiXis
open to new aspects and as the join points are usually the same (method invocations
and object creation), we can even imagine a generic and configurable aspect language
that can be used for new aspects. However this is subject to future research.

References

1. Object Management Grouphe Common Object Request Broker Architectuz2. (1998).

2. G.Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, J. ksjrect-
oriented programmingTechn. Report SPL97-008P9710042, Xerox Palo Alto Res. Center,
Feb. 1997.

3. M. Makpangou, Y. Gourhant, J.-P. Le Narzul and M. Shapiro: “Fragmented objects for dis-
tributed abstractions.” In: T. L. Casavant and M. Singhal (e@&egdings in Distr. Computing
SystemsEEE Comp. Society Press (1994), 170-186.

4. M. van Steen, P. Homburg, and A.S. Tanenbalihe architectural design of Globe: a wide-
area distributed systerTechnical Report IR-422, Vrije Universiteit Amsterdam (1997).

5. M. Geier, M. Steckermeier, U. Becker, F. Hauck, E. Meier and U. Rastofer: “Support for mo-
bility and replication in the AspectlX architecture.” ECOOP’98 Workshop ReaddrNCS,
Springer (1998).

The AspectIXORB Architecture

F. Hauck, U. Becker, M. Geier, E. Meier, U. Rastofer, M. Steckermeier

University of Erlangen-Ninberg, Germany,
{hauck, ubecker, geier, meier, rastofer,
mstecker }@informatik.uni-erlangen.de ,
http://www4.informatik.uni-erlangen.de/Projects/AspectIX/

The CORBA architecture defines the semantics of the interaction of distributed objects
[1]. These semantics are hardly extensible. CORBA services can extend the basic func-
tionality of an ORB, but they are based on those fixed semantics.

AspectlXis an open and more flexible architecture than CORBA, buAspectIX
implementation can also host CORBA-compliant applicatidspectiXadopts a frag-
mented object model similar to tt@lobe system [2], which means that each client
owns a local part of the distributed object and that these local parts (called fragments)
can interact with one another. A local fragment can be intelligent and carry a part of
the distributed object’s functionality, or it can act as a dumb stub as in the CORBA-
compliantAspectlXprofile.

With fragments the internal communication semantics of a distributed object is en-
tirely hidden to the client. For example, the object can decide on using replication and
caching of data, and on different communication semantics (e.g., fast real-time commu-
nication). Often it is also desirable to let the client influence some of these properties.
Controlling nonfunctional and functional properties in an orthogonal way is the goal of
aspect-oriented programming. Therefore, a set of closely related properties is called an
aspect [3].

AspectlXprovides generic configuration interfaces for each distributed object that
allow clients to activate and control the aspects supported by the object. The object
may use a different local fragment if it is more suited to fulfill the configuration. The
replacement of fragments is transparent to the client.

Within the AspectiXproject we investigate various application classes (profiles) and
their requirements in form of aspect definitions (see also [4]): CORBA, wide-area sys-
tems (replication, consistency), mobile agents (mobility), and process control systems
(real-time constraints, fault tolerance).

References

1. Object Management Grouphe Common Object Request Broker ArchitegtWegsion 2.2.
(1998).

2. M. van Steen, P. Homburg, A. Tanenbaufe architectural design of Globe: a wide-area
distributed systenirechnical Report IR-422, Vrije Univ. Amsterdam (1997).

3. F. Hauck, et al.: “AspectlX: A middleware for aspect-oriented programming2GoOP’98
Workshop ReadetNCS, Springer (1998).

4. M. Geier, M. Steckermeier, et al.: “Support for mobility and replication in the AspectiX ar-
chitecture.” INECOOP’98 Workshop ReaddrNCS, Springer (1998).

—~10-—

